Allele-specific Gene Silencing of Mutant mRNA Restores Cellular Function in Ullrich Congenital Muscular Dystrophy Fibroblasts
نویسندگان
چکیده
Ullrich congenital muscular dystrophy (UCMD) is an inherited muscle disorder characterized clinically by muscle weakness, distal joint hyperlaxity, and proximal joint contractures. Sporadic and recessive mutations in the three collagen VI genes, COL6A1, COL6A2, and COL6A3, are reported to be causative. In the sporadic forms, a heterozygous point mutation causing glycine substitution in the triple helical domain has been identified in higher rate. In this study, we examined the efficacy of siRNAs, which target point mutation site, on specific knockdown toward transcripts from mutant allele and evaluated consequent cellular phenotype of UCMD fibroblasts. We evaluated the effect of siRNAs targeted to silence-specific COL6A1 alleles in UCMD fibroblasts, where simultaneous expression of both wild-type and mutant collagen VI resulted in defective collagen localization. Addition of mutant-specific siRNAs allowed normal extracellular localization of collagen VI surrounding fibroblasts, suggesting selective inhibition of mutant collagen VI. Targeting the single-nucleotide COL6A1 c.850G>A (p.G284R) mutation responsible a sporadic autosomal dominant form of UCMD can potently and selectively block expression of mutant collagen VI. These results suggest that allele-specific knockdown of the mutant mRNA can potentially be considered as a therapeutic procedure in UCMD due to COL6A1 point mutations.
منابع مشابه
Gapmer Antisense Oligonucleotides Suppress the Mutant Allele of COL6A3 and Restore Functional Protein in Ullrich Muscular Dystrophy
Dominant-negative mutations in the genes that encode the three major α chains of collagen type VI, COL6A1, COL6A2, and COL6A3, account for more than 50% of Ullrich congenital muscular dystrophy patients and nearly all Bethlem myopathy patients. Gapmer antisense oligonucleotides (AONs) are usually used for gene silencing by stimulating RNA cleavage through the recruitment of an endogenous endonu...
متن کاملsiRNA-mediated Allele-specific Silencing of a COL6A3 Mutation in a Cellular Model of Dominant Ullrich Muscular Dystrophy
Congenital muscular dystrophy type Ullrich (UCMD) is a severe disorder of early childhood onset for which currently there is no effective treatment. UCMD commonly is caused by dominant-negative mutations in the genes coding for collagen type VI, a major microfibrillar component of the extracellular matrix surrounding the muscle fibers. To explore RNA interference (RNAi) as a potential therapy f...
متن کاملCyclosporine A treatment for Ullrich congenital muscular dystrophy: a cellular study of mitochondrial dysfunction and its rescue.
Mutations in COL6A1, COL6A2 and COL6A3, the genes which encode the extra-cellular matrix component collagen VI, lead to Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). Although the Col6a1(-/-) null mouse has an extremely mild neuromuscular phenotype, a mitochondrial defect has been demonstrated, linked to dysregulation of the mitochondrial permeability transition pore (PTP) o...
متن کاملUllrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI.
Ullrich syndrome is a recessive congenital muscular dystrophy affecting connective tissue and muscle. The molecular basis is unknown. Reverse transcription-PCR amplification performed on RNA extracted from fibroblasts or muscle of three Ullrich patients followed by heteroduplex analysis displayed heteroduplexes in one of the three genes coding for collagen type VI (COL6). In patient A, we detec...
متن کامل5 0 Trans - Splicing Repair of the PLEC 1 Gene
The efficient treatment of hereditary disorders, especially of those caused by dominant-negative mutations still remains an obstacle to be overcome. Allele specificity is a critical aspect that must be addressed by silencing therapies such as small interfering RNA, which has the potential risk of also reducing expression of the normal allele. To overcome this hurdle, we used spliceosome-mediate...
متن کامل